IONIC & METALLIC BONDING

Chapter 7

VALENCE ELECTRONS

- Electrons in the highest occupied energy level.
 - Na
 - Al
 - Cl
 - Se
- Lewis (Electron) Dot Diagrams show valence electrons; inner electrons are represented by the element symbol.

FORMATION OF IONS

Cations lose electrons

- What types of elements form cations?
- What type of cations do alkali metals form? Alkaline earth metals?
 - Na
 - o Al

Anions gain electrons

- What type of element form anions?
- What type of anions do halogens form? Group 6A?
 - Cl

REVIEW QUESTIONS

- How can you determine the number of valence electrons in an atom of a representative element?
- How many valence electrons are in each of the following atoms?
 - Potassium
 - Carbon
 - Magnesium
 - Oxygen
- Draw the electron dot structure for each of the above elements.
- How many electrons will each of the following gain or lose in forming an ion?
 - Calcium
 - Fluorine
 - Aluminum
 - Oxygen

TYPES OF BONDS

All atoms want 8 electrons (octet rule). Bonding occurs to satisfy this need for electrons!

Ionic Bonds

 Metal/Nonmetal - Electrons are transferred from one atom to another.

Metallic Bonds

 Metal/Metal - A mixture of metals with delocalized electrons that flow through all atoms' shells.

Covalent/Molecular Bonds

 Nonmetal/Nonmetal (or metalloid) - Electrons are shared/fought over between atoms.

- Sodium has 1 valence electron
- Chlorine has 7 valence electrons
- An electron transferred gives each an octet

Na: 1s²2s²2p⁶3s¹

Cl: 1s²2s²2p⁶3s²3p⁵

This transfer forms ions, each with an octet:

$$Cl^{-}$$
 1s²2s²2p⁶3s²3p⁶

The resulting ions come together due to electrostatic attraction (opposites attract):

Na⁺ Cl⁻

The net charge on the compound must equal zero

- First, find the chemical formula for the compound.
 - Na likes to form 1+ ions, Cl likes to form 1- ions.
 - Na⁺ and Cl⁻ balance together in a formula as NaCl.
- Then, draw the appropriate number of electrons in Lewis Dot form.
- Finally, "transfer" the electrons appropriately.

SODIUM CHLORIDE CRYSTAL LATTICE

Ionic compounds form solid crystals at ordinary temperatures.

Ionic compounds organize in a characteristic crystal lattice of alternating positive and negative ions.

All salts are ionic compounds and form crystals.

PROPERTIES OF IONIC COMPOUNDS

- Crystalline solids at room temperature
 - Think table salt.
- High melting points
 - Takes a lot of heat/energy to melt them.
- Conduct electricity when melted or dissolved
- Soluble in water

DISSOCIATION

- In water, ionic compounds sometimes break up into the ions of which they're composed.
 - This is a process called dissociation.

METALLIC BONDING

Strong forces of attraction are responsible for the high melting point of most metals.

METALLIC BONDS

- In metallic bonds, all the cations are packed closely together.
- The valence electrons, rather than hanging out near their atoms' nuclei, exist in a sea of delocalized electrons.
- There is still an attraction between the free floating electrons (-) and metal cations (+).

METALLIC BONDING

METALLIC BONDING

The chemical bonding that results from the attraction between metal cations and the surrounding sea of electrons

■ Vacant p and d orbitals in metal's outer energy levels overlap, and allow outer electrons to move freely throughout the metal

Valence electrons do not belong to any one atom

Cu

PACKING IN METALS

Model: Packing uniform, hard spheres to best use available space. This is called *closest packing*. Each atom has 12 nearest neighbors.

PROPERTIES OF METALS

- Metals are good conductors of heat and electricity
- ☐ Metals are malleable
- Metals are ductile
- Metals have high tensile strength
- Metals have luster
- ☐ Insoluble in water

ALLOYS

- A mixture of 2 or more metals that have superior properties to their components
 - Brass, bronze, steel are alloys

METAL ALLOYS

Substitutional Alloy: some metal atoms replaced by others of similar size.

METAL ALLOYS

Interstitial Alloy:

Interstices (holes) in closest packed metal structure are occupied by small atoms.

